Y=-5t^2+15+50

Simple and best practice solution for Y=-5t^2+15+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-5t^2+15+50 equation:



=-5Y^2+15+50
We move all terms to the left:
-(-5Y^2+15+50)=0
We get rid of parentheses
5Y^2-15-50=0
We add all the numbers together, and all the variables
5Y^2-65=0
a = 5; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·5·(-65)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{13}}{2*5}=\frac{0-10\sqrt{13}}{10} =-\frac{10\sqrt{13}}{10} =-\sqrt{13} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{13}}{2*5}=\frac{0+10\sqrt{13}}{10} =\frac{10\sqrt{13}}{10} =\sqrt{13} $

See similar equations:

| -12m+27=-9+6m | | 42-21x=-84 | | -15-7z=-3z+21 | | 6y-4=36 | | -4u+8=-9u+18 | | 2(3x=4)=32 | | -6p-16=2p+24 | | 8m-72=-m-18 | | a-7/8=5/24 | | -3y+5=-8y=-15 | | -3y+5=-8y=-1 | | 5(x-2)-3(2x+7)=x | | 55-3x-3x=10 | | -+5=-8y=-15 | | 7^(x+4)=10^(x) | | 5n+20-15n+8=10+8n-3+9n | | -5-+16y=43 | | (H)t=210+33t | | 3y+5-8y-1=4y-5+10y+9 | | 5^{2x-3}=0.2^{2x-5} | | 6+3a-5=8-2a+10+15a | | 7n+18=5n-6 | | 41​k=3(−41​k+3) | | 3+5-3b+7b=8-9b-15b-3 | | 2x=90/5 | | 6-3m+3-5m=10-2m+5+12m | | 3c-2+5c=10c-5+15-2 | | 5m+12=-6m-109 | | f^{2}-(4f-2f^{2}-8)=2f^{2}+4f-8 | | /3m^{2}+5m=m^{2}-7m-18 | | 1/2x(2x+6)=3x+13 | | 13=6n+7n |

Equations solver categories